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ABSTRACT 

CNNs have now established themselves as the de-facto standard for distinguishing between visual features in an image while capturing its spatial and temporal 

characteristics. Computational capabilities were a limiting factor in model performance in computer vision tasks a decade ago; however, in the foreseeable future 

and the current circumstances, the challenge is to develop environmentally friendly, power-efficient algorithms. Developing nature-inspired computer algorithms 

is one such technique. This is the main reason why, although having lower performance than CNNs, spiking neural networks (SNNs) have attracted a lot of 

interest. SNNs are closer to the present neural networks in that they mirror the mammalian visual cortex. Unlike multi -layer perceptrons, they only fire when the 

specified membrane potential is breached. The human brain, which has been optimizing itself for a million years, consumes the same amount of power as a  

typical laptop. Researchers have previously used spike-based computation to develop neuromorphic energy efficient microchips. Using neuromorphic computer 

processors instead of traditional GPUs might be more environmentally friendly and efficient. Furthermore, developing on-device AI is a current issue. SNNs 

might be just an ideal solution for this problem. From a classification standpoint, this paper presents an in-depth attention of deep learning-based simulation 

studies of SNNs. 
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Hardware 

The conventional von Neumann computing architecture that separates the processing and the memory unit cannot handle the complexity of deep 

learning models and their various paradigms. Neuromorphic computing hardware consists of neurons and synapses to storing data and computation 

with a neural network to communicate with them efficiently. CMOS-based chips developed by IBM and Intel (see Appendix) for SNN computations 

are limited to large-scale modular computing units with increasing neurons and synapses. This study reiterates that significant advances are required to 

increase the number of onboard neurons and synapses to mimic the complex operations of the human brain like cognitive processing, sophisticated 

motor control, learning, and abstraction. Moreover, CMOS-based systems are limited by their room-scale size. Thus, we need to look into Memristor- 

based alternatives due to their synaptic-like behaviour. 

 

The Memristor, i.e., ‘Resistor + memory,’ is a building block of synaptic devices that requires high integration density, low latency, low power, and 

non-volatile memory capable of mimicking the brain's learning and forgetting functions. These capabilities are imperative for the implementation of 

synaptic learning used in neuromorphic computing. We find Memristors as promising candidates for synaptic learning applications. Some of the Hybrid 

CMOS-Memristor devices are investigated below: 

 

1. Phase Change RAM (P-Ram): It is a nonvolatile ram that utilizes the difference in resistivity levels between the amorphous phase (high 

resistivity) and the crystalline phase (low resistivity) between its two electrodes. On the application of voltage or current to the electrodes, the 

phase of the material is changed. To ‘Set’ is the phase change from amorphous to crystalline phase through successive voltage  or current pulses. 

While ‘Reset’ is the phase change from ‘Crystalline’ to ‘Amorphous’ achieved by applying a large current pulse for a short time. PRAM has 

many desirable characteristics like high speed, low energy consumption suitable for implementing artificial synapses in machine learning 

algorithms. However, its inherent resistance drift phenomenon in the amorphous phase destroys its stability and causes power consumption 

problems that are not desirable in the long run. PRam needs to resolve its reliability issues. 

 

2. Resistive RAM (ReRam): It is a non-volatile RAM in which the resistance changes according to the applied voltage [1]. It uses an insulator that 

produces a metal defect which forms a conductivity path hence a ‘Set’ operation. This conductivity path or filament is removed by another voltage 

hence a ‘RESET’ operation. ReRam offers significant advantages by reducing the physical space to express multiple resistances as resistance is 

developed by creating oxygen vacancies through metal ions. However, the conductivity path developed in ReRAMs introduces variations in a 

magnitude spread over the path and causes reliability issues in implementing long-term memory effects. 
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3. Atomic Switch Network (ASN): It is a network-based synaptic device that exhibits short-term and long-term memory. This device is typically 

composed of a network of interfacial atomic switches, which are self-assembled and randomly connected. Ag2S metal-insulator-metal (MIM) 

interface is widely used to form the switches [1]. On the application of input voltage, the conductance in the device is changed and is sustained for 

some time called (STP) short term plasticity, mimicking human neurons, however, the duration of conductance is random and most of the time 

uncontrollable [1] hence ASN are potential candidates for synaptic devices if they overcome these limitations.  

New synaptic memory devices exhibit issues that make older design principles obsolete.The resistance variation of ReRAM and PRAM 

introduces errors over time hence a trade-off between energy consumption and induced error. We propose that a high error rate may be suitable in 

some hardware systems as long as the system's core functionality is met, in our case, lesser energy consumption to protect the environment. 

 

We believe hybrid systems of memristor layers embedded on CMOS substrate is the solution to neuromorphic hardware engineering[2]. They will 

enable computing and learning processes by combining memristors on spiking processors to fire neurons in silicon chips after attaining a specific 

threshold value[2]. PCB design techniques [3] can assemble chips with memristors, allowing to substantially scale up the number of neurons and 

synapses in a neural system. However, there would be limitations relating to the density of memristor layers and their onboard programmability. 

 

Conclusion and Future Research Directions 

In this paper we discussed the current gaps between available RAM (Hybrid CMOS-Memristor Architecture) options and the ideal hardware required 

for Neuromorphic engineering. We also proposed hybrid Memristor-CMOS based PCB designs which can substantially increase the number of neurons 

and synapses hence mimicking the brain more efficiently. 
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Appendix 

 

A. CMOS based SNN Specific Neuromorphic chips 

 

1. IBM's TrueNorth chip contains 16M neurons(onboard) and 4B synapses (onboard) [2] but does not offer on-chip learning like the human brain. 

TrueNorth consumes around 25pJ of energy per connection compared to 10fJ of the human brain [2].  

2. Intel's Loihi chip contains 131k on-chip neurons and 126M on-chip synapses. It offers on-chip learning and consumes around 81pJ of energy per 

connection. 

3. ETHZ-INI developed the ROLLS chip which included 256 neurons and 128 k on-line        learning synapses. It has been updated to the Dynamic 

Neuromorphic Asynchronous Processor (DYNAPs) with 1 K neurons and 64 k on-line learning synapses [2]. 

4. Stanford’s NeuroGrid uses subthreshold analogue neural circuits however it has been updated with the BrainDrop chip prototype which is a 

single-core chip planned to be part of 1M neurons Brain Storm system. 

 

B. Comparative Analysis of various CMOS based SNN Chips 

 

Platform Brain TrueNorth Loihi Rolls NeuroGrid 

Technology Natural Digital Digital Mixed-Signal sub threshold Analog sub threshold 

Transistors - 5.4 B 2.07B 12.2M 23M 

neurons(on chip) - 1M 131K 256 65K 

synapses(on chip) - 256M 126M 128K 100M 

neurons(board) 10
11 

16M - - 1M 

synapses(board) 10
15 

4B - - 4B 

Energy consumed 10fJ 25pJ 81pJ >77fJ 100pJ 

On-chip learning Yes No Yes Yes No 

 

 


